半導体製造用短波長光源:エキシマレーザーからLPP - EUV光源への挑戦 Short wavelength light source for semiconductor manufacturing: Challenge from excimer laser to LPP-EUV light source

溝口計
Hakaru Mizoguchi
斎藤隆志
Takashi Saito
伊藤仙聡
Noritoshi Itou
山崎卓
Taku Yamazaki

最近の IT 技術の著しい進展は CPU やメモリーといった半導体の微細化による性能向上に下支えされている. 微細 化には光リソグラフィ技術が寄与しており,現在は光源として紫外線を発光するエキシマレーザーが用いられてい る. ギガフォトン社では,短波長化・高出力化を進め市場要望に応えており,エキシマレーザーの出荷台数で 2014 年以降世界トップシェアとなっている.しかし,微細化要望は更に進み,より短波長をプラズマ発光で実現できる EUV (Extreme Ultra Violet)光源の実現が強く要望されている.

ギガフォトン社では、2002年以来、EUV 光源の研究・開発を行い、現在では商品型パイロット機の開発に成功した. 独自の技術を導入することで、市場要望に合致する高効率・高出力を達成できた. 現在の課題は、半導体工場において安定して長時間稼働を実現するためのエンジニアリング的側面の改善で、数年以内の出荷を目指し開発を進めている.

The remarkable progress of the latest IT technologies are supported by miniaturization of semiconductor devices such as CPUs and memory chips. Optical lithography technology used in semiconductor manufacturing processes has contributed to this miniaturization. Today, excimer laser which emits a beam of ultraviolet light is used as the light source. As a result of making efforts to meet the market's demands for laser with shorter wavelengths and higher outputs, the Gigaphoton company has been holding top share in the global market of excimer laser systems since 2014. However, strong requests for further miniaturization are still growing, and the EUV (Extreme Ultra Violet) light source, which can emit plasma light of a shorter wavelength, is strongly desired for practical use.

Gigaphoton has been researching and developing EUV light source systems since 2002, and succeeded in developing a near-product prototype. By using original technologies, a system having high efficiency and high output that can meet market demands has been attained. The current issue is to establish a production line that can be run stably for prolonged periods of time at the semiconductor factory by improvement of the engineering aspects. The development is under progress, aiming to start delivery in a few years.

Key Words: リソグラフィ, エキシマレーザー, EUV, プラズマ, 半導体

1. はじめに

ここ十年の日本の半導体製造産業の退潮にも関わらず, 世界の半導体需要は今も年率約4%で着実な拡大を遂げて いる. 半導体の微細加工技術の心臓部である縮小投影露 光装置のリソグラフィ工程は180 nm 以降 KrF エキシマレ ーザーが、100 nm 以降では ArF エキシマレーザーが量産 装置として使用され,続く 65 nm 以下の最先端量産ライ ンでは ArF 液浸(Immersion) リソグラフィ技術が使用さ れている.また45 nm ノード以降では,現在主力の32 nm, 22 nmのNANDフラッシュメモリの量産ラインでは、ArF 液浸リソグラフィにダブルパターンニング技術を実現す る露光装置が導入され半導体が量産されている. それに 続く 16 nm では, かつては 13.5 nm の極端紫外光 (EUV) をつかう EUV リソグラフィが本命とされていたが、光源 出力の間題から量産技術の選択からはずされ(2012年)、 現在では ArF 液浸リソグラフィにマルチパターニングを 組み合わせた導入が始まっている。2016年現在、リソグ ラフィ用エキシマレーザーの市場規模は、800億円/年を 超え着実に成長を遂げている.

さて液浸露光技術は装置の対物レンズとウエハの間を 屈折率の大きな液体を満たし、見かけの波長を短くし解 像力を上げ、焦点深度を大きくする.液浸による解像力 と焦点深度は、次式で表されレーリー(Rayleigh)の式と 呼ばれる.すなわち;

Resolution = $k_1 (\lambda/n) / \sin\theta$ DOF = $k_2 \cdot n\lambda / (\sin\theta)^2$ k_1, k_2 : experimental constant factor

n:屈折率, λ:波長

図1 2回露光パターン技術の例¹⁾

しかしながら、1 回の露光ではこの式中の k_1 値を 0.25 以下に下げる事はできない. そこで 2 回露光技術が注目 を集め実際に用いられてきた. 図 1 に 2 回露光の基本的 な方式の一例を示す.1 回目の露光で形成したパターンの 空間周波数を 2 倍にするのはマルチプルパターニング技 術²⁾といわれ、最近は三回露光、四回露光までもが最先端 工程へ導入検討されている.

図 2 量産用 ArF エキシマレーザーGT64A

現在,量産工場では ArF 液浸露光および多重露光工程 に挟帯域 ArF エキシマレーザー²⁾が使用されている. ギガ フォトン社では ArF リソグラフィ用光源 "GT シリーズ" を量産している. 2004 年に独自のインジェクションロッ ク方式の ArF レーザーGT40A をギガフォトン社から製品 化し,その後 GT60A を 2005 年にリリースして以来, 120W 出力の GT64A にまで進化し続けている³⁾(図 2). "GT シリーズ"は、登場が遅れている EUV を尻目に高い稼動 実績(Availability > 99.6%)がエンドユーザから高く評価 されている. 2015 年末現在,世界の主要ユーザーで 400 台以上の累積出荷実績を有する. ギガフォトン社はリー マンショック以来の日本の半導体産業の退潮で伸び悩ん できたが、最近は省エネ性能の優位性が海外ユーザーに も高く評価され、2014年度の通年世界シェア 52%、2015 年度 63%を越えた(図3).ギガフォトン社は世界一のエ キシマレーザー出荷台数の光源メーカーに成長した. 一 方で最先端市場では多重露光ではプロセスが複雑化し, トランジスタコストの上昇から EUV 露光技術の登場が熱 望されている.

2016 VOL. 62 NO.169

半導体製造用短波長光源:エキシマレーザーからLPP - EUV光源への挑戦

- 2. EUVリソグラフィ
 - 2.1 EUVリソグラフィと開発の経緯性

図4 EUV リソグラフィ露光装置の概念図

波長13.5 nmのEUV光は反射光学系(反射率68%程度) による縮小投影を用いたリソグラフィで1989年にNTT の木下ら⁴⁾により提唱された日本発の技術である.NA=0.3 程度の反射光学系を使って20 nm以下の解像力を実現で き,究極の光リソグラフィのともいわれている(図4). ただし13.5 nm光は気体によって強く吸収され高真空ま たは希薄な高純度ガスの封入された容器内でしか伝播し ない.さらにミラー反射率が68%しかないため,11枚系 のミラーで高NAの縮小投影を行うと1.4%しか露光面に 届かない.量産では300 mmウエハで100WPH(Wafer Per Hour)以上の生産性を実現するには光源は250W以上の 出力が必要とされる.

	R (K1=0.4) nm	n	medium	λ/n nm	NA	Power
KrF dry	124	1	Air	248	0.8	40
ArF dry	103	1	Air	193	0.75	45
F2 dry	84	1	N ₂	157	0.75	-
ArF immersion	40	1.44	H ₂ O	134	1.35	90
EUV (λ=13.6nm)	18	1	Vacuum	13.6	0.3	>250
EUV (λ=13.6nm)	9	1	Vacuum	13.6	0.6	>500
EUV (λ = 6.7nm)	4.5	1	Vacuum	6.7	0.6	>1000

	表 1	液浸露光技術の波長	屈折率と解像
--	-----	-----------	--------

EUV リソグラフィは光源の出力がネックとなり登場が 遅れている.しかしその波及効果の大きさから,次の世 代の 10 nm ノード以降での本命技術として現在も世界的 に大きな研究開発費が投じられている.光源波長,光学 系の NA と解像度の関係を(表1)に示す.現在は NA=0.3 の光学系と 13.5 nm の波長を組み合わせることで 18 nm 程 度の解像力が得られる.NA=0.55 以上の次世代投影光学 系の開発も進められ,光量ロスが少なく縦横倍率の異な る Anamorphic optics が提案され開発が進められている. ただし次世代では微細化に伴うレジスト感度低下などの システム要求から,500 W 以上が必要とされている⁵⁾.将 来は 6.7 nm 近傍の波長の 1000 W 程度の光源と NA=0.6 の 光学系との組み合わせが実現できれば 5 nm 以下の解像も 可能とされる(**表 1**).

2.2 世界の露光装置開発と市場の現況

現在世界の EUV リソグラフィの最先端量産用露光装置 開発はオランダの ASML 社主導のもとに進んでいる.初 期 (2000 年頃) には小フィールドの露光装置が各露光装 置メーカーで試作されたが,2006 年に ASML 社が開発し たフルフィールドの α -Demo-Tool が現在に繋がる本格的 露光装置であった.光源に 10 W級(設計値)の放電プラ ズマ光源を搭載し,欧州の IMEC および米国 SEMATECH の Albany研究所などに納入された^{9,2009}年からはASML 社は 100 W 光源(設計値)を搭載した EUV β 機 NXE-3100 を開発した⁷⁾. この装置には XTREME 社製の DPP 光源を 搭載した 1 台と Cymer 社製 LPP 光源を搭載した 5 台の計 6 台が出荷された.当初 100 W 光源の搭載を目指し量産の 先行機の実現を目指したが,2012 年時点で光源出力は 7 ~10 W の出力に低迷し EUV リソグラフィ量産性検証の ボトルネックとなった.

2013 年 EUV γ 機 NXE-3300 では 250 W (設計値) の EUV 光源を搭載し 200 WPH 以上の生産性を目指したが⁸⁾,光 源は当初 10 W レベルの稼働で,ASML からは 2015 年ま でに 80 W 以上に光源を改良する計画が公表され TSMC 社⁹⁾, Intel 社¹⁰⁾で 2014 年後半に改造が行われ 80 W の模擬運 転に成功したと報告されてた.さらに 2015 年にようやく フィールドで 80 W レベルの改良とそれによる稼働が複数 のユーザー先で実現され,1000 WPD (Wafer Per Day)の 達成が報告された.さらに 2016 年現在では露光装置メー カーの実験室で 125 W 運転で 1500 WPD のチャンピオン データの達成も報告されている¹¹⁾.

他方で光源メーカーはビジネスの遅れで EUV 光源開発 費が嵩み,経営が圧迫され厳しい状況にある. EUVβ機で 先行した Cymer 社は 2013 年 6 月に開発費が嵩み ASML 社に買収された. さらに α-Demo-Tool で先行していた XTREME 社は 2013 年 5 月にその煽りで解散となった. Gigaphoton 社は 2012 年から単独での本格的な開発を進め ているが,未だ開発フェーズで製品化は道半ばである. 光源メーカーは文字通り激動の"Death Valley"の中にある と言えよう.

3. 高出力EUV光源の開発の経緯とコンセプト

図5にギガフォトンのEUV 光源の概念図を示す.現在 はこの方式の優れた特性が認められ,世界の高出力EUV 光源の主流の方式となった.EUV 光を効率よく発生させ るには,黒体輻射の原理より約300,000 Kのプラズマを生 成する必要がある.このプラズマを生成するため,これ まで2つの方式でアプローチがなされてきた.

図 5 ギガフォトン社 EUV 光源のコンセプト

すなわち、1 つはパルス放電を用いた Discharge Produced Plasma 方式¹²⁾, もう一つはパルスレーザーをターゲット に照射する Laser Produced Plasma 方式である. 世界では 1990 年台末から米国で EUVLLC¹³⁾, 欧州の Fraunhofer 研 究所等の機関で研究が開始された.

我が国では2002年より研究組合極端紫外線露光技術研 究開発機構(EUVA)が組織され EUV リソグラフィの露 光装置技術および光源技術の開発がスタートした.筆者 らもこれに参画し当初からターゲット物質にパルス CO2 レーザーを照射し高温プラズマを発生させるスキームを テーマとして追求してきた¹⁴⁾. また 2003 年からスタート した文科省リーディングプロジェクトの九州大学岡田教 授の測定結果¹⁵⁾をきっかけに、筆者らは2006年から本命 になる技術と確信しドライバーレーザーに CO2 レーザー を用いた LPP 方式の優れた性能を予見するデータを確認 して,この方式を開発してきた.CO2 レーザーシステムに は信頼性が確立した産業用の CW-CO, レーザーを増幅器 として用いた独自の MOPA システムを採用している. す なわち発振段の高繰り返しパルス光 (100 kHz, 15 ns) を, 複数の CO2 増幅器により増幅している¹⁶⁾. ターゲットは Sn を融点に加熱して, 20 µm 程度の液体 Sn ドロップレッ トの生成技術の安定化を行ってきた. EUV 集光ミラーは, プラズマ近傍に設置され, EUV 光を露光装置の照明光学 系へ反射集光する. このプラズマから発生する高速イオ ンによるミラー表面の多層膜のスパッタリング損傷が発 生するが,独自の磁場を用いたイオン制御で,その防止・ 緩和を行っている.

4. 最近の高出力EUV光源開発の進展

4.1 変換効率の向上

YAG レーザーと CO₂レーザーを時間差を置いて Sn ド ロップレットに照射するダブルパルス法により生成プラ ズマのパラメーターを最適化したところ高い変換効率 (>3%)が得られることを柳田らは実験的に見出した¹⁷⁾. この結果は西原らのグループの理論計算の結果と変換効 率で良く説明できた¹⁸⁾. さらに 2012 年にはプリパルスレ ーザーのパルス幅の最適化を行い画期的な約 50%の効率 改善を実現した. すなわち,これまでパルス幅約 10 ns の プリパルスを約 10 ps のパルスに変更して CO₂レーザーパ ルスで加熱することで変換効率が 3.3%から 4.7%に向上し た. さらに最近では 5.5%の変換効率も実験的に検証され た(図 6).これは世界最高記録で画期的なデータである. 製品レベルでこの効率が実現できれば、平均出力 21 kW パルス CO₂レーザーで 250 W の EUV 出力が、40 kW パル ス CO₂レーザーで EUV 500 W が達成できることになる¹⁹⁾.

図 6 EUV 変換効率(EUV 光/CO₂ レーザー)

4.2 高出力CO₂レーザーの開発²⁰⁾²¹⁾

250 Wの EUV 出力を達成するために 2011 年度と 2012 年度 NEDO の支援の元で三菱電機㈱との共同プロジェク トを実施し、ギガフォトン製のパルスオシレータと三菱 電機製の4段増幅器を組み合わせ 100 kHz, 15 ns のパル スで 20 kW を超える CO₂ レーザー増幅器の出力が実証さ れた(図7).

図7 CO2 増幅実験装置(三菱電機㈱提供)

2016 VOL. 62 NO.169

半導体製造用短波長光源:エキシマレーザーからLPP - EUV光源への挑戦

この成果をもとに、この増幅器を実用レベルに仕上げ て 2014年に高出力の $CO_2 \nu$ ーザーの増幅実験が行われた. その試験結果によれば、従来 10 kW で制限されていた出 力が、2 倍の 20 kW まで改善できている. さらに多波長の $CO_2 \nu$ ーザーの発振線を使った増幅実験で増幅効率が 10 ~15%改善され、Proto#2 装置にて 23 kW の発生に成功し た.現在は、この増幅器を 4 台直列に並べたシステムが Pilot 装置のドライバーレーザーとして開発中である(第 5.項).

4.3 ドロップレットジェネレーター

ターゲットには、ドロップレット(液滴)ターゲット 方式を採用している.まず、錫を融点(231.9℃)以上に 加熱し、液化する.これを吐出することによって、ドロ ップレットターゲットをプラズマ生成位置に供給してい る.安定にドロップレットターゲットを供給するために、 多くの技術改善を行ってきた.その結果最近は、直径約 20 µmのドロップレットターゲットを100 kHzで生成しド ロップレットスピードで90 m/s で生成し運転時間で200 時間以上、位置安定性に優れたドロップレットターゲッ トを生成できるようになった.

図8 ドロップレット連続生成時間の推移

4.4 磁場デブリミチゲーション技術²²⁾

図9 コレクタミラー周辺の構造

錫液滴にプリパルスレーザー光が照射し炭酸ガスレー ザー光が照射され EUV 発光する.その後磁場によりガイ ドされた錫イオンが磁力線に沿って排出される(図9). 現在,前節で述べた 10 ps のプリパルスに CO₂ レーザーを 組み合わせるとイオン化率が 99%以上に改善できること が計測の結果証明されている.実際の装置試験を行って みると,集光ミラー表面のイオンキャッチャー付近には イオンキャッチャーからの逆拡散による Sn のデポジショ ンが観測されている(図10).

図 10 EUV ミラー部の Sn 汚損データー

一方でエッチングガスの流路の制御で集光ミラーでの デブリが桁違いに改善されることがシミュレーションで 確認された(図11).

図 11 イオン捕集器からの逆拡散の改善

すでに 10 W レベル出力の Proto#1 号機では,3 日間に 渡る EUV 光照射部への EUV 光の伝送にも成功している.

4.5 EUV光源装置プロト#2による高出力実験²³⁾²⁴⁾

2002 年以来, これまでギガフォトン社では EUV 光源の 実験装置を数々試作し技術の改良を進めてきた, 2007 年 には ETS 機, 2012 年には Proto#1 号機(図 12-1), 2014 年からは Proto#2 号機(図 12-2)を稼働させてきた.現在 は,この Proto#2 号機を使って高出力光源技術の開発を進 めてきた.2015 年からは,高出力実験と並行させて製品 化を目指した Pilot#1 号機の開発を進めている(表 2).

表 2 ギガフォトン社 EUV 光源試作装置の諸元

	Operational Specification Concept		Pilot #1 HVM readiness	Proto #2 Power scaling	Proto#1 Proof of concept	
		EUV Power	250 W	> 100 W	25 W	
Pe		CE	4%	3.5%	3%	
		Pulse rate	100 kHz	100 kHz	100 kHz	
	Target Performance	Output angle	62°upper (matched to NXE)	62°upper (matched to NXE)	Horizontal	
		Availability	> 75%	1 week operation	1 week operation	
		Droplet generator	< 20 µm	20 <i>µ</i> m	20 - 25 <i>µ</i> m	
		CO ₂ laser	27 kW	20 kW	5 kW	
	Technology	Pre-pulse laser	picosecond	picosecond	picosecond	
		Debris mitigation	> 3 month	10 days	validation of magnetic mitigation in system	

図 12-1 EUV 光源装置 Proto#1 号機

図 12-2 EUV 光源装置 Proto#2 号機

図 13 に, Proto#2 号機の出力の改良の経緯と Pilot#1 号 機の性能の現状を示した. 2015 年以降エンジニアリング 技術の改良と共に急速に出力データが改善されていることが見て取れる.

2016年6月には250Wを超える運転に短時間ではある が成功した(図14).オープンループでは301W(in Burst) の出力を発生させ、フィードバックをかけ光量を安定化 させたクローズループで256Wの運転に成功した.また この時点で、高出力運転にもかかわらず変換効率 CE=4.0%が実現されている.ただしProto#2装置の制約か ら運転のDuty Cycle は50%であった.

図 14 Proto#2 号機による 250W 運転データ

また同じ Proto#2 号機のシステム試験のデータで EUV 出力 158-132 W (in Burst) で露光動作を模擬した Duty=40-50%での約 120 時間連続で安定した発光データ (3σ<0.5%)が確認されている(図 15).

半導体製造用短波長光源:エキシマレーザーからLPP - EUV光源への挑戦

図 16 250WEUV 光源装置 GL200E-Pilot

ギガフォトン社では 2017 年の 12 nm ノード以降の量産 工場向け 250 W (@ I/F)の EUV 光源の実現とその量産化 を目指し開発を進めている. 図 16 に商品型パイロット機 (Gigaphoton GL200E-Pilot)の概観を示す.サブファブと 呼ばれる階下スペースにプリパルスレーザー光とメイン プラズマ加熱用の CO₂ レーザーが配置され,クリーンル ーム階に EUV 発生用のチャンバーが配置されるように設 計されている. EUV 発生用チャンバーと露光装置とは光 学的に結合されている.この内部で Sn ドロップレットに レーザー光を照射し EUV 光を発生させる.現在ギガフォ トン平塚事業所で建設終え,2016 年 9 月からの本格稼働 を始めた.以下本装置の概要と最新データを紹介する.

5.1 EUVチャンバーシステム

図 17 EUV チャンバーシステム 外観

図 17 に EUV チャンバーシステムの外観を示す.写真 から見て取れるように、1 対の超電導磁石の間に EUV を 発生させる真空チャンバーが挿入された構造になってい る.人間のサイズからそのおおよその大きさが推定でき ると思う.

図 18 EUV チャンバーシステム断面構造

図 18 に真空チャンバーの断面図が示されている. 図中 赤色で塗られている部分が錫のターゲットを供給するド ロップレットジェネレーター,青く塗られている部分が ドロップレットキャッチャーである. ドロップレットジ ェネレーターで100 kHz, 20 µm の錫のドロップレットが 生成・供給され、プラズマ化されなかったターゲットが ドロップレットキャッチャーで回収される. 真ん中の黄 色い半球上の構造物が EUV 光を集める集光ミラーで、そ の中央部に穴が開いておりその穴から集光ミラーの焦点 位置に供給されたターゲットをレーザーでプラズマ化し 発光させる. プラズマから発せられた光は集光ミラーで 集められもう1つの焦点である, Intermediate Focus と呼ば れる点に集められる.発生したプラズマは超電導磁石が 作る磁場でイオンキャッチャーの方向ヘガイドされる. この EUV チャンバー全体はレーザービームを集光するユ ニットの上に配置され、全体はメンテナンス時に引き出 せるようにレールの上に載っている. チャンバー全体は 高真空状態が保持できる構成になっている. 運転時には 低圧の水素ガスを流して, イオンキャッチャーで捕集で きなかったものをエッチングしてガス化し排気して処理 し、内部を清浄に保つように設計した.

5.2 ドライバーレーザーシステム

図 19 ドライバレーザーシステム(全体外観)

ドライバーレーザーシステムのパース図と外観を図 19 に示した.ドライバーレーザー部はメンテナンススペー スも含め約 11 m×6 m×2.3 m^hと非常に大きいが,大半は CO₂レーザーの後段の4アンプが大半を占めている.プリ パルスと CO₂のシードパルスを生成する CO₂-OSC 部は 1.7 m×1.7 m×2 m にまとまられている.また CO₂レーザー 増幅システム全体の構成は図 20 に示す.シードパルスは QCL レーザーを使って構成し,中段は小型の CO₂ガスレ ーザー,後段は産業用として確立した板金加工用の CO₂ レーザーを用い信頼性を高めている.

図 20 ドライバレーザーシステム (CO₂ レーザー)²⁵⁾

後段の CO₂ レーザーは 4.項でも説明した,三菱電機で 本応用に特化して開発された増幅ユニット 4 台を使って 構成されている²⁶⁾. 図 21 に外観図を示す.写真の人間の 大きさと比べてその大きさが想像できると思う.

図 21 CO₂ レーザー最終増幅器部 外観

5.3 ターゲットシューティングシステム

図22にドロップレットターゲットにレーザービームを 照射してプラズマを生成するためのシューティングシス テムの構成を示す.ドロップレットジェネレーターは真 空中で X-Z ステージにマウントされ,生成されたドロッ プレットの軌跡は X,Zのフローカメラで計測され,仮想 的なプラズマ点で常に同じ点にターゲットが通るように ステージが制御されている.またタイミングを正確に制 御するためにドロップレットの間隔が計測され,それに パルスレーザー光のタイミングとビームの集光位置を同 期させて時間的にも空間的にも正確にシューティングを 行っている.その制御状況をリアルタイムで監視しなが ら運転を行っている EUV 光源運転操作部の写真を図 23 に示す.

図 23 EUV 光源運転操作部 外観

5.4 最新の試験結果

これらの Pilot#1 機のハードウエアを使って得た運転デ ータの一例を図 24 に示す. UV 出力 105 W (in Burst), 平均出力 100 W の約5時間連続で Duty=95%の高デューテ ィ運転かつ CE=5%の高効率運転で安定した発光データ (3o<0.5%) が確認されている(図 24). 100 W レベル の高出力運転で CE=5%運転は世界最高レベルの運転とい えよう.

図24 Pilot#1号機の最新運転データ

また CE=5%運転を実現するために 2012 年の小型実験 装置による実験, 2016 年初めから Proto#2 号機による実験 に基づく数々のエンジニアリング上の改良を加えてきた. その経緯を含めて示したのが図 25 である.小型実験装置 の実験から 5%程度の CE が実現できる可能性が示唆され ていた.その後高出力装置での実験では最初 3%程度の CE しか実現できていなかったが,プリパルスレーザーの 改良,シューティング制度の改良で Proto#2 号機で 4%が 可能になった.さらに Pilot#1 号機ではドライバーレーザ ーの改良を加えた結果 5%の CE が実現できるようになっ た.

図 25 Pilot#1 号機の変換効率

EUV 光源プラズマの発光メカニズムについてはシミュ レーションによる研究の精度を高めるために、プラズマ のパラメーター(電子密度,温度,イオン密度,温度) を直接計測する試みもなされ、プラズマ内のこれらパラ メーターの計測により更なる高効率化の可能性の検討が 試みられている.今後の研究の進展を期待したい²⁷⁾.

6. おわりに

これまで述べてきたように、EUV 開発は民間主体の努 カで、EUV リソグラフィの半導体量産工場への本格導入 は"If"から"When"で議論される時代となった. 今後は EUV 光源も、短時間の輝度性能だけでなく Duty, Availability そしてランニングコストで議論される時代に なってきた.本稿で述べてきたデータを時間の推移順に 並べた**表3**でEUV 光源装置の現状の到達点のまとめとし たい.

表3 運転データと開発目標まとめ

	2016 Mar.	2016 Jun.	2016 Aug.	2016 Sep.	2016 Sep.	2016 Dec.
	Proto#2	Proto#2	Proto#2	Proto#2	Pilot#1	Pilot#1 target
Power (av.)	79-52W	128W	62-99W	101W	100W	250W
Duty Cycle	40-50%	50%	50-80%	95%	95%	100%
Power (in Burst)	158-132W	256W	115-124W	106W	105W	250W
Dose Margine	40%	15%	30-35%	30%	30%	30%
Power (open loop)	221-184W	301W	177W	151W	150W	325W
Conv. Eff. (CE)	3.5	4.0%	4.0%	3.8%	5.0%	4.5%
Operation time	119h	-	56h	49h	5h	>1000h
Rep. Rate	100kHz	100kHz	50kHz	50kHz	50kHz	100kHz
CO2 Laser Power	15kW	20kW	13kW	11.9kW	9.1kW	25 kW

一方で将来のさらなる短波長光源への展開が世界の原 子分光学の研究者と企業のコラボレーションで行われて いる.毎年11月 Dublinで開催される EUV 光源ワークシ ョップでは、短波長領域での多層膜の探索が行われ 6.7 nm 領域で高い反射率の多層膜の可能性が欧州の露光装置メ ーカから提案された²⁸⁾.さらに Gd, Tb などで CO₂ レー ザーによる EUV 発光実験で約 2%の高効率発光が実験的 に確認され²⁹⁾,さらに高い効率の可能性も示されている. また最近の新しい動きとしては自由電子レーザーを使っ た kW 級の EUV 光源によるリソグラフィの提案が欧米を 中心に検討が始まっている³⁰⁾.

7. 参考文献

- 岡崎信次:「先端リソグラフィの技術動向」,クリーンテ クノロジー, No.3, Vol.19 (2009) 1-6.
- O. Wakabayashi, T. Ariga, T. Kumazaki et.al,: Optical Microlithography XVII, SPIE Vol.5377 (2004) [5377-187]
- Hirotaka Miyamoto, Takahito Kumazaki, Hiroaki Tsushima, Akihiko Kurosu, Takeshi Ohta, Takashi Matsunaga, Hakaru Mizoguchi: "The next-generation ArF excimer laser for multiple-patterning immersion lithography with helium free operation" Optical Microlithography XXIX, Proceedings of SPIE Vol.9780 (2016) [9780-1L]
- 4) H. Kinoshita et al., J.Vac.Sci.Technol.B7, 1648 (1989)
- Winfried Kaiser; "EUV Optics: Achievements and Future Perspectives", 2015 EUVL Symposium (2015. Oct.5-7, Maastricht, Nietherland)
- J. Zimmerman, H. Meiling, H. Meijer, et.al: "ASML EUV Alpha Demo Tool Development and Status" SEMATECH Litho Forum (May 23, 2006)
- J. Stoeldraijer, D. Ockwell, C. Wagner: "EUVL into production
 Update on ASML' s NXE platform" 2009 EUVL Symposium, Prague (2009)
- R. Peeters, S. Lok, et.al.: "ASML' s NXE platform performance and volume Introduction" Extreme Ultraviolet (EUV) Lithography IV, Proc. SPIE 8679 (2013) [8679-50]
- Jack J.H. Chen, TSMC: "Progress on enabling EUV lithography for high volume manufacturing" 2015 EUVL Symposium (5-7 October 2 015, Maastricht, Netherlands)
- Mark Phillips, Intel Corporation "EUVL readiness for 7nm" 2015 EUVL Symposium (5-7 October 2015, Maastricht, Netherlands)
- Britt Turkot, Intel Corporation; "EUVL Readiness for High Volume Manufacturing", 2016 EUVL symposium (24-26, Oct.2016, Hiroshima, Japan)
- U. Stamm et. al.; "High Power EUV sources for lithography", Presentation of EUVL Source Workshop October 29, 2001 (Matsue, 2001)
- C. Gwyn: "EUV LLC Program Status and Plans", Presentation of the 1st EUVL Workshop in Tokyo (2001)
- 14) 遠藤彰:「極端紫外リソグラフィー光源の装置化技術開発」
 レーザー研究 32 巻 12 号 (2004) 757-762
- 15) H. Tanaka, 著者 5 名, et. al.: Appl. Phys. Lett. Vol.87 (2005) 041503
- 16) A. Endo, et al.: Proc. SPIE 6703 (2007), 670309
- 17) T.Yanagida, et al: "Characterization and optimization of tin particle mitigation and EUV conversion efficiency in a laser produced plasma EUV light source" Proc. SPIE 7969, Extreme Ultraviolet Lithography II, (2011)
- 18) K. Nishihara et. al.: Phys. Plasmas 15 (2008) 056708

- H. Mizoguchi, "High CE technology EUV source for HVM" Extreme Ultraviolet (EUV) Lithography IV, Proc. SPIE 8679 (2013) [8679-9]
- 20) Y. Tanino, J. Nishimae et. al.: "A Driver CO₂ Laser using transverse-flow CO₂ laser amplifiers", Symposium on EUV lithography (2013.10.6 - 10.10, Toyama, Japan)
- 21) K. M. Nowak, Y. Kawasuji, T. Ohta1 et al.: "EUV driver CO₂ laser system using multi-line nano-second pulse high-stability master oscillator for Gigaphoton's EUV LPP system", Symposium on EUV lithography (2013.10.6 - 10.10, Toyama, Japan)
- H. Mizoguchi, et. al,: "High CE Technology EUV Source for HVM" Extreme Ultraviolet (EUV) Lithography IV, Proc. SPIE8679 (2013) [8679-9]
- 23) Hakaru Mizoguchi, Hiroaki Nakarai, Tamotsu Abe, Krzysztof M. Nowak, Yasufumi Kawasuji, Hiroshi Tanaka, Yukio Watanabe, Tsukasa Hori, Takeshi Kodama, Yutaka Shiraishi, Tatsuya Yanagida, Tsuyoshi Yamada, Taku Yamazaki, Shinji Okazaki, Takashi Saitou: "Performance of new high-power HVM LPP-EUV source" Extreme Ultraviolet (EUV) Lithography VII, Proc. SPIE9776 (2016)
- 24) H. Mizoguchi "Development of 250W EUV Light Source for HVM Lithography", 2016 EUVL symposium (24-26, Oct. 2016, Hiroshima, Japan)
- 25) Takashi Suganuma, Hiroaki Hamano, Toshio Yokoduka, Yoshiaki Kurosawa, Krzysztof Nowak, Yasufumi Kawasuji, Hiroaki Nakarai, Takashi Saito, Hakaru Mizoguchi; "High power drive laser development for EUV Lithography", 2016 EUVL symposium (24-26, Oct. 2016, Hiroshima, Japan)
- 26) Koji Yasui, Naoyuki Nakamura, Jun-ichi Nishimae, Masashi Naruse, Kazuo Sugihara, Masato Matsubara, "Stable and scalable CO₂ laser drivers for high-volume-manufacturing extreme ultraviolet lithography applications" 2016 EUVL symposium (24-26, Oct. 2016, Hiroshima, Japan)
- 27) George Soumagne "Comparison between Thomson scattering Measurements and plasma simulation results for a EUV lithography source plasma" 2016 EUVL symposium (24-26, Oct.2016, Hiroshima, Japan)
- 28) V. Banine et_al. "Opportunity to extend EUV lithography to a shorter wavelength", Symposium on EUV lithography, Brussels, Belgium (2012)
- 29) K. Koshelev: "Experimental study of laser produced gadorinium plasma emitting at 6.7 nm", International workshop on EUV sources (Nov. 13-15, 2010, Doublin. Ireland)
- 30) Erik Hosler; "Free-electron Laser Extreme Ultraviolet Lithography: Considerations for High-Volume Manufacturing", 2014 EUVL Symposium (2014. Oct. 27-29, Washington D.C., USA)

Hakaru Mizoguchi ^{みぞ くち はかる} 溝 口 計

2000 年, ギガフォトン入社. 代表取締役副社長 兼 CTO

Noritoshi Itou 伊藤仙聡 2000年, ギガフォトン入社 執行役員 EUV 事業推進部長

Taku Yamazaki やま ざき たく 2000 年, ギガフォトン入社. EUV開発部 副部長 【筆者からひと言】

EUV 光源開発の一部は2003 年から2010 年にわたり NEDO「極端紫外線(EUV)露光システムの基盤技術研究開発」の一部としてEUVA にてなされ,2009 年以降の高出力 CO₂ レーザーシステムの開発は NEDO「省エネルギー革新技術開発事業」による補助金を受けて平成21-23 年度および23-24 年度に、また「NEDO 戦略的省エネルギー技術革新プログラム」において25-27 年度「高効率 LPP 法 EUV 光源の実証開発」の一部として研究開発を実施している.ここに記し研究を支えていただいている関係機関および関係機関の皆様に感謝の意を表します.また EUV 光源開発に携わる弊社社員諸氏の昼夜を分かたぬ努力に感謝します.